NASA Technical Memorandum 100849

Electrohydrodynamic Migration of Charged
Droplets in an Insulating Fluid

(NASA-TN-100849) ELECTROHYDRODYNAMIC N88=-21424
MIGRATION OF CHARGED DROPLETS IN AN
INSULATING FLUID [NASA) 20 p CSCL 20D

Onclas

G3/34 0140261

R. Balasubramaniam and R.A. Wilkinson
Lewis Research Center
Cleveland, Ohio

Prepared for the

National Fluid Dynamic Congress
sponsored by the American Institute of Aeronautics and Astronautics
Cincinnati, Ohio, July 24-28, 1988

NNASAN



E-4046

ELECTROHYDRODYNAMIC MIGRATION OF CHARGED DROPLETS IN AN INSULATING FLUID

R. Balasubramaniam! and R.A. Wilkinson
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

The motion of charged, conducting droplets present in an insulating fluid
medium is analyzed under the action of an electric field, in microgravity.
Previous analyses of this problem have considered the Maxwell stresses as the
only driving force. In the present study, arguments from macroscopic thermody-
namics and the molecular theory of surface tension are used to show that sur-
face tension gradients can be induced due to the variation of the electric
potential on the interface. In the limit of Reynolds numbers small compared to
unity, the terminal velocity of migration of the droplet is calculated under
the combined action of the Maxwell stresses and the surface tension gradients.
The results show that there are no surface tension gradients (i.e., no electric
potential variation at the interface) in a case that is considered strictly
electrostatic. With the inclusion of surface currents due to the convection of
the surface charges, surface tension gradients do exist and tend to reduce the
terminal velocity of the droplet. The shape of the droplet altered by the
motion has also been calculated, when the deformations from the spherical shape
are small.

NOMENCLATURE
Aj area of the interface
E electric field
Eo electric field far away from the droplet

Fe.Fh net electric and hydrodynamic force on the droplet
f deformed droplet shape

J1,J2 constants defined by equations (53) and (54)

kg Boltzmann's constant

k2 electrical conductivity of the droplet

N normal stress

P pressure

Qo.0o dimensional total surface charge and dimensional average surface charge
density of the droplet
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dimensional and dimensionless surface charge density
dimensional and dimensionless radial coordinate
principal radii of curvature

Reynolds number

droplet radius

vector joining the center of mass of two molecules
entropy

temperature

unit vector tangent to droplet surface

dimensional and dimensionless radial velocity

internal energy

dimensional and dimensionless fangentia] velocity
reference velocity

volume

dimensional and dimensionless terminal velocity of the droplet
axial coordinate

tagged constant (equals 1 or 2)

one and two particle (molecules) surface excess quantities
tagged constant (equals 0 or 1)

electrical permittivity

dimensionless droplet deformation

tangential coordinate

ratio of lengths of axes of the droplet in the flow direction to that

in the normal direction
dynamic viscosity
kinematic viscosity

surface tension



t,t® hydrodynamic and Maxwell shear stress

$ azimuthal coordinate

$,¢ dimensional and dimensioniess electric potential

¢ particle (molecular) potential energy from many particle Hamiltonian

TR dimensional and dimensionless stream function

Subscripts:

1 outer fluid

2 droplet medium

i interface

o} reference values

INTRODUCTION

Electrically charged droplets present in a fluid with which they are
immiscible, will move when they are subjected to an electric field. They
attain a steady speed of electrohydrodynamic migration, termed the terminal
velocity, in a uniform field, when the electrical force is balanced by the vis-
cous resistance. Such migration is also called electrokinetic or electropho-
retic motion in colloidal systems, where the motion is due to the interaction
of the applied filed with the electric double layer present at the interface
and has been extensively investigated (refs. 1 to 6). Electrohydrodynamic
migration, like thermocapillary migration, is useful in many applications in
microgravity, where, in the absence of buoyancy, the locations of droplets and
bubbles need to be controlled by various mechanisms.

There have been few investigations of the electrokinetics of fluid-fluid
interfaces (ref. 6). Most studies (refs. 2 to 6) consider the Maxwell stresses
as the driving force for the flow. Levich (ref. 1) has analyzed the motion of
mercury drops in electrolytes, representing the driving force as a surface ten-
sion gradient, arising from the electrocapillary effect. It is the contention
of the authors that the Maxwell stresses and surface tension gradients due to
electrocapillarity, though each occurs because of the applied field, are inde-
pendent driving mechanisms as far as the flow is concerned and hence can act
simultaneously. The combined effect of the two is analyzed in this study for
a model problem of the migration of a charged, conducting droplet in an elec-
trically insulating medium. Since the droplet medium is conducting, the charge
resides as a surface charge at the interface. This situation is the same as
the "charge monolayer" problem considered by Spertell and Saville (ref. 4).

In what follows, the thermodynamics of the system are considered to show
that surface tension gradients can be generated by the variation of the elec-
tric potential at the interface, and reasoning from a molecular basis is used
to explain the origin of the surface tension gradient. The electrohydrodynamic



formulation for the migration of a spherical droplet is then presented and the
potential and flow fields and the terminal velocity are calculated. The calcu-
lTated fields are lastly used to determine the slightly perturbed shape of the
droplet.

THERMODYNAMICS AT THE INTERFACE

Presented below is a simplified view of the thermodynamics of the inter-
face where the occurrence of a charge double layer is excluded. Consider a
system consisting of an electrically insulating fluid with an electrically con-
ducting immiscible droplet inside, under microgravity (fig. 1). Let the system
change from one equilibrium state to another, during which the system can
exchange heat and electrical charge with the surroundings, but no mass enters
or leaves the system. Denoting the insulating fluid, the droplet medium and
the interface region by the subscripts 1, 2 and 1 respectively and assuming
that each subsystem (1,2,i) remains in equilibrium at the initial and final
states for a reversible process with the droplet and the interface not trans-
ferring charge to the insulating fluid, the change in the internal energy of
the system is

d%s = d 2% + dUy + d%; QP
where
d?y = T1dS) - Phd 7 (2)
d?9 = T2dSy - Pad %> (3)
d%; = TidSi + odA; + &;dQ; (4)

o 1is the surface tension (or interfacial tension; the two words are used
interchangeably), Q; 1is the surface chargg brought to the interface from
infinity where the potential is zero and ¢; is the electric potential at the

interface. Keeping the intensive variables fixed, if the extensive variables
are permitted to undergo a finite change, (ref. 7) the following expression
may be written for %

Wi = TS5 + oAy + 6101 (5

Differentiating equation (5) and subtracting equation (4) yields the Gibbs-
Duhem equation for the interface as

Ajdo + 01d$i + S3dT; =0 (6)

If the surface is isothermal during the process, dT; = 0 and hence

Qi .
do = - K; d¢1 7

which is analogous to the Lippman equation for electrocapillary phenomena
(ref. 8). From equation (7), we may write

Vso = -3iY.8, (8)



where VS is the surface gradient operator and ai is the surface charge den-

sity. Thus surface tension gradients can occur when the surface is charged
and the potential varies on the interface.

MOLECULAR BASIS OF SURFACE TENSION GRADIENT

If one thinks of the surface of the charged droplet as a membrane with
embedded charge, then whenever there is a nonuniform charge density, there will
be unbalanced electric forces between the charges. This is the physical pic-
ture that persuades us that if the externally applied electric field induces a
nonuniform charge, then a surface stress is induced.

Referring to a treatise on the molecular theory of surface tension, one
can write a molecular level expression for o as (ref. 9)

1 - -~ >
g = —FKBT + 5 J f2(§;]2¢) o t drlz, (9)

where T and Ty are the 1 and 2 particle surface excess quantities respec-
}jve]y; ¢ 1is the particle potential energy from the many particle Hamiltonian;
t" is a unit vector tangent to the surface; and kgT is the Boltzmann constant
times temperature. The potential energy term above effectively accumulates the
surface component of the force acting on a particle by all the other particles.
I> ensures that contributions occur only where there is an excess or depletion
of particle pairs with respect to the bulk.

On our charged surface, ¢ will contain contributions from the external
electric field, which is a solution to the electrostatic probiem, as well as
the local electric field from neighboring charged particles. It is the local
electric field present in the nonuniform surface charge distribution case that
we contend physically mandates a surface tension gradient in addition to Max-
well stresses calculated from an external electric field.

ELECTROHYDRODYNAMIC FORMULATION

Consider a conducting droplet present in an insulating fluid of infinite
extent (Fig. 1). The droplet carries a total surface charge, Q,, and is sub-
jected to a uniform electric field Ey. We would lTike to calcu?ate the termi-
nal velocity of the droplet and the flow and potential fields in both fluids.
As the droplet moves at its constant terminal velocity, it is convenient to
choose a coordinate system on the droplet with the origin at its center of
mass. In this coordinate system, the outer fluid approaches the droplet with
the terminal velocity V_, which is to be determined.

The flow is considered to be incompressible, laminar and with spatially
constant physical properties (viscosity, electrical conductivity, etc). The
droplet is assumed to be spherical. From the geometry and the boundary condi-
tions, the problem is symmetric about the flow direction (the droplet polar
axis). The basic equations for the flow in the two fluids are the Navier-
Stokes equations. The treatment of electrical effects in this study is the
same as in the study by Melcher and Taylor (ref. 10). As mentioned in
reference 10, the dynamic currents are so small and the induced magnetic field
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is negligible and hence, the basic equations are the electrostatic form of Max-
well's equations. It is assumed that the current density is proportional to
the electric field in the droplet (Ohms law), with the electrical conductivity
being a constant. In both fluids, the electric displacement is taken to be
proportional to the electric field, with the permittivity being a constant.
The Maxwell equations then reduce to an equation for the electrostatic poten-
tial. Subscripts 1 and 2 are used to denote the outer fluid and the droplet
medium respectively. The coordinate system is R,8,& with the origin at the
center of mass of the droplet (fig. 1). 6 1is measured clockwise from the
point of incidence of the flow. Rationalized MKS units are used for the elec-
trical quantities.

A reference velocity scale VR for the flow field may be estimated from
the fact that when the droplet moves at the terminal velocity, the Coulombic
force on it is balanced by the viscous forces. Hence,

2 2
4nR “qE, ~ 4mR " Vp/RDVp ~ dE R /uy (10)

where qg = Qo/(4vR02) is the surface charge density. VR thus yields typical
values of the velocities thay may be anticipated. The Reynolds number is

2
Re = VRRO/v = qOEORO /(p]v) a1

Re compares the inertial forces on a fluid element to the viscous forces on
it. In what follows, Re for both fluids is assumed to be small compared to
unity. The Navier-Stokes equations are written in the Re << 1 limit for the
stream function (ref. 11). Dimensionless variables are defined as follows

-~

PR LY N B (12)
R

5. b -
o VR R VRRo EoRo

where VR 1is as defined by equation (10) and the stream function ¢ is such
that

b1 w1 ¥y
rzsin o 36 r sin & or

The basic equations in the two fluids are

4

0% - 0 (13
v2¢ o a4
where
2
02 - g;i + ;E sin © %5 [51; ) ge]
(15)




The boundary conditions are r » « are

v
¥y ? EELrZ sin2 6 (16)

i.e., the velocity tends to the free stream velocity v_ =V_/Vgp and
¢] + -r cos 6 an

i.e., the electric field is uniform far away from the droplet (= -9% = -Eé?).
The boundary conditions at r = 1 (the droplet surface) are

(a) ' ¥y = constant = 0, Yy = constant = 0 (18)

i.e., the radial velocities are zero at the surface. The constants may be set
equal to zero without loss of generality.

3%,
(b) 5 < ar (19)
i.e., the tangential velocities are continuous,
a¢] 8¢2
(c) % " 38 20
i.e., the tangential fields are continuous,
() G i 862]’ 20
q=|-¢y 3p + €5 7p
13 2 9R R=Ro

This boundary condition is written dimensionally and represents the discontinu-
ity in the normal displacement fields in proportion to the surface charge den-
sity (ref. 12). Since the total charge on the droplet is Qg = 4wR02qo, we
must have

v 2 2
; g 2nR ° sin © do - 4mR _“q (22)

(e) Shear stress balance: The balance of shear stresses at the interface
may be written as

[o5]

e e 1l 3o _
TIRe T T2R0 * TIRe T T2r0 * R_ 30 0 (23)

a_fv
where TRo = uR 3R [R

]‘ is the hydrodynamic shear stress and
R=R
0

Tse = eEREe’ is the electric or Maxwell shear stress. From equation (8),
R=R
o}
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30/30 = - @ 3$/36. Using dimensionless variables and defining q = §/qg, the
shear stress balance at r = 1 may be written as

v H v
a || M2 (Y2| _,, 8
ar [r ] H ar [r ] =29 39 (24)

It may be noted that = 30/90 = -q(3¢/38) at r =1 and hence the

.8 _ g.©
1re 2ro
coefficient in the right hand side of equation (24) is 2. Since this is the
only place in the formulation that the surface tension gradients are encoun-
tered (surface tension is also encountered in the normal stress balance at the
droplet surface and will be addressed later), the term 2qd¢/36 will be tagged
for purposes of comparison and written as fqd¢/06. Hence B = 2 will recover
the present formulation while B = 1 represents a formulation where either Max-
well shear stresses or surface tension gradients (but not both) are considered.

(f) Charge conservation: Since the interface can move with respect to the
bulk of the droplet, the motion of the surface charges constitutes an electric
current at the surface. Since charge must be conserved, and the outside medium
is insulating, there must exist a radial conduction current at the surface from
the inside medium. Using Ohm's law (current density = conductivity x field)
and inventorying charge movement, charge conservation may be written as

2
¢ q
2 o 19
B - kz”] STh 6 36 (gv sin ©) (25)

(g) Net force on the droplet: As the droplet moves at its terminal veloc-
ity, the net force acting on it must be zero. Since surface tension is an
internal force for the droplet and cannot act on itself, the sum of the hydro-
dynamic and electrlcal forces exerted on the droplet by the outside medium must
be zero, i.e. Fe + Fh 0. By symmetry, the net force perpendicular to the
flow d1rect1on is zero. That the net force parallel to the flow direction is
zero may be expressed as

i 1 .2 3
[ ]ER]EO]SIH e - 7 ER]cos 8] + p]RO R

0
V] au]
X g Jsin o - Zp] 3R P] cos 6 sin 8 d& = 0 (26)
R=RO

where Py is the hydrodynamic pressure in the outer fluid. This condition is
essentially what determines the unknown eigenvalue V. Instead of integrating
the surface stresses, Fe may also be calculated alternatively by recognizing
that it is equal to the force on the net charge Qg due to the uniform field
Eo. Hence

2
Fo = -4mR “q E 27



in the §>direction, where Y = -R cos ©. Similarly, F, may also be calcula-
ted by using a theorem (ref. 11) valid when Re << 1 and may be expressed in
dimensional form along A direction as

. v
Tim _ 1 ® 2 . 2
Fh = -811'}1] Rs» R sin 29 [q; - Z_R sin 9] (28)

This completes the specification of the boundary value problem. It may be
noted that the normal stress balance equation at the droplet surface has not
been used in the formulation thus far. This is because the droplet is assumed
to be spherical. Strictly speaking, it is the normal stress balance that
determines the true shape of the droplet as it moves. We will return to this
point later.

SOLUTION
(a) Case 1: Consider a case where qoz/kzp] << 1 as is the case for
highly conducting droplets. The surface current due to charge convection may

then be neglected and the problem is strictly electrostatic. Equation (25)
reduces to

a— =0 at r =1 (29)

The solution to equations (13) and (14) is

¢] = -r COS O + slgo % + C:; o (30)
¢, = C] = constant (31)
r Ve 2 ] 1|2
¥y = [- 35T+ 5(1 -v.) F] sin” © (32)
¥y =7 vy - 2 - rDsin? e (33)

M 3p
v o= |14 22 ]+ 2 (34)
= My 2w,

The dimensional terminal velocity is

V = (35

which is the same as in reference 4.

When Hy > =, there is no flow in the droplet and the results reduce to

the motion of a solid sphere in a fluid. The terminal velocity of the solid
9



sphere may be derived by equating the Coulombic force on it to the Stokes
drag. This yields 4wRocqoEg = 6mRouIV_, V_ = 200EoRo/(3u1), which checks with
equation (35) in the limit wup » «. From the solution, since ¢» = Cy and
a¢]/ae =0 at r =1, there are no tangential Maxwell stresses and no surface

tension gradients at the surface of the droplet. AIll the driving force for
the flow comes from the normal Maxwell stresses, which is what contributes to
Fo. Since the normal stress condition at r = 1 has not been considered, the
driving force is not explicitly seen. To see the effects of surface tension
gradients, which is the primary goal of the present study, another case must
be considered where charge convection must be retained.

(b) Case 2: Here qozlkzpl is not small and charge convection is
retained. The resulting nonuniform charge distribution will induce surface
tension gradients (cf, the molecular picture). However, for mathematical sim-
plicity, the surface charge distribution is taken to be uniform in the charge
conservation boundary condition, i.e., the change in the surface charge density
is much smaller than the average surface charge density qo and 93q/30 is
negligible. The exact condition, when this is true, is given following
equation (40). For this case q = 1 and equation (25) becomes

2

ad q
2 0 13 /. . _
w c kzp] in o ae(vs1n 8) at r =1 (36)
The solution is
2
q q
6, = - cos © + —¢ L [1 - o By - 2)} e (37
1% 2¥ r
2
9%
¢2 T Kons (v, - 2)r cos 6 (38)
251
Zquz 3“2
3+ + —
k
! 2M My
v =—¢ > - (39)
3Rq Ju
0 2
3+k + 5
2M M)

¥ and ¥, are the same as in equations (32) and (33), with v_ as given

above. The surface charge density calculated from equations (21) and (37) to
(39) is

2

e, E K,p €
q=1+ ; o3 _ 21 > Ll cos o (40)
° 1 + ——-—qu + 32
Kok 2y




Thus g = 1 is typically the case when eEy, epEy << qg. It may be noted
that in the limit qozl(k2p1) + 0, equation (39) becomes equation (34) and the
solution for Case 1 is recovered. Also v, * 2/3 when pp/uy; » o, which is the
result for a _solid sphere. It is interesting to note that v, also becomes
2/3 when q02/(k2p1) + «». This may physically be explained for the case with
ko » 0 as follows. In equations (25) or (36), when kp » 0, the conduction
current at the droplet surface tends to zero, as we expect finite electric
fields within the droplet. Hence, the divergence of the current due to charge
convection, the charge convection current iteself, and hence the surface veloc-
ity must be zero. This is precisely the case for a nonconducting solid sphere,
where the surface velocity is zero on account of the no slip condition. In
Case 2, driving forces due to normal and tangential Maxwell stresses at the
surface and surface tension gradients are all present. As mentioned before,
the effects of the surface tension gradients are contained in the tagged vari-
able fB. B = 2 includes surface tension gradients, while B = 1 does not

(3 = 1 may also represent a case where surface tension gradients are retained
while Maxwell stresses are not; however, the Maxwell stresses must then be
neglected everywhere in the formulation and would result in Fq = 0 in the
consideration of the net force on the droplet, a result that is not physically
sensible). From equation (39),

2
3Voo qg quz 3“2
= - 1 + + (41)
an Kou K, u 2u
251 251 1

Thus, for any B, 3ve/9B is always negative. Hence vo 1is smaller for R = 2
than for B =1, and so all other things held constant, inclusion of surface
tension gradients results in a lower terminal velocity of migration of the
droplet. The dimensional terminal velocity including surface tension gradi-
ents is

; 4q02 3p2

+ + —
Vo= Gofofo | *a b (42)

® ¥ 6q02 9,

3+k + 5=

i 21 M1

(¢) Deformations of the droplet:

Having determined the terminal velocity and the velocity and potential
fields, the perturbations to the shape of the droplet may now be determined,
assuming that such deformations are small. As mentioned before, it is the nor-
mal stress balance at the droplet surface that determines its true shape and
will now be considered. The following analysis closely resembles that in
references 13 and 14. The true shape of the droplet is represented by
R(B) = Ry + f(®). The normal stress condition may be written as

1o
N, - N,y = o [ﬁ; . ﬁ;] at R=R +f (43)

where N is the normal stress due to both hydrodynamic and electrical effects
and Ry, Rp are the principal radii of curvature of the interface. When
n = f/Ry << 1, the following may be written (ref. 13)

1



e 2 e df
N=Tr* ™R "R +f(‘Re+TRe)aé (44)

2 2f 1 d [ df] (45

=— Jsin 8 5=
R02 sin o 46 de

where <tgp = -P + 2u 3U/3R, t8RR = e/2(ER% - Eg2), P being the hydrodynamic
pressure. The dimensionless pressure p = P/(uVR/Ry) in the two fluids may be
shown to be (ref. 1)

no

A
py = - " cos 6, p, = Ko - 20A;r cos © (46)

where A and Ay are the coefficients of r sin26 and r% sin2e terms of the
respective stream functions and Kg is an unknown constant. The surface ten-
sion o 1is a function of 6 and from equation (8), it may be written as

o(8) = o, - v [¢<Ro,e) - %] 47

where @ has been assumed to be independent of 6. y is again a tagged vari-
able, where y = 1 retains the surface tension variations, while vy = 0 regards

the surface tension as uniform.

Droplet shape for Case 1: Assuming n << 1 and using equations (44) to
(47) and the solutions to ¢ and y for Case 1, equation (43) may finally be
written as

2

v q, R €
‘ 9-[' Q'J} _,_F2R oo 9%51% R
sinede 51" %de] ¥ =25 K T g o T T T 088 B

where the left hand side of equation (48) is essentially the right hand side
of equation (43). Neither B nor vy appear in equation (48) as 34¢/36 =0
at r =1 for Case 1. The boundary conditions on n are that the volume of
the droplet is unchanged as it deforms and the origin of the coordinates is at
the center of mass of the droplet. For n << 1, these become

_[; n sine de =0, Sg n cos 8 sine doe =0 (49)
From the analysis by Brignell (ref. 15), the solution is

e1ERo 2

(3 cos“© -1) (50)

3
n(®) = 8

Hence, n << 1 is valid when e1Eq2Rg/0g << 1. The shape of the droplet is an
ellipsoid of revolution, with an axis of rotation along the flow direction.
To leading order, the ratio of the lengths of axes in the flow direction to
that in the normal direction is

12



2
9¢.E "R
1o o (51)

800

A=[1+nC0)1/01 + n(90°)] = 1 +

One sees, therefore, the droplet elongates in the flow direction.

Droplet shape for Case 2: Similarly, using the solutions for Case 2 and
assuming that qoEgRp/og << 1 (i.e., Ao/og << 1) and n << 1, equation (43) may
finally be written for the combinations B =2, y=1 or B=1, y=0 as

2

Vv e, ETR
1 d (.. d ~ H2'R 1700 2 ]
sin 6 d6 [S‘" © a%] +2n=2- o Ko - 2o, [32 + 3y - Jy)cos” B (52)
where
2 4
% el 9% 2
J,= 9+ 12 —2(2-3v) + |8 -] =% (@ -3v) (53)
1 K,p @ € 2 2 ©
2M 1 kS
oM
4
€ q
3. = =2 1] =2 2 - 3v )P (54)
2 € 2 2 ©
LS

It is interesting to note that for both the combinations of B and vy, no cos
© terms are present in the right hand side of equation (52). y does not
appear anywhere else in equations (52) to (54) when Ao/og << 1. The presence
of a cos © term causes a logarithmic singularity in the soiution for n at

9 = 0,m. Hence, both the formulations with and without surface tension gradi
ents predict finite deformations of the droplet. The solution is

1 e1E02Ro 2
= —— (J, - J){(3 cos" 6 -1) (55)

24 % 1 2

n(®) =

Once again, n << 1=pe,E?Ro/o, << 1. However, gofoRo/op << 1 that has been
assumed is a more restrictive condition as ejEp/qgo << 1 for Case 2. It may

be shown that in the limit qoz/sz] + 0, equation (55) becomes equation (50)
and the droplet shape for Case 1 is recovered, thus serving as a check. Also.,

4 6
26,0 | % |, e
2 2 v IR B
an Cif Ro 2 (kouy) 2P |
= —— (3¢c0s ® - 1 3 (56)
R = 240 7 3
0 Ra, 3u,
1 + +
Kouy = 2m]
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and 3|n|/oR > 0 for B > 5/6 - €2/(3e7). Hence, |n| for B =2 is greater
than |n| for B = 1. Thus the inclusion of surface tension gradients increases
the deformations of the droplet. Physically, this is to be expected as surface
tension variations would tend to deform the droplet further away from its
spherical shape. Under the conditions Aoc/og << 1 and n << 1, the increase
in deformations comes from a greater imbalance in the radial Maxwell stresses
at the surface of the droplet, originating from the inclusion of surface ten-
sion variations. To leading order, the ratio of lengths of axes of the droplet
in the flow direction to that in the normal direction is

2
e, E_ "R

. —l—g——Q 3, - 3.) (57)

oo 1

2

DISCUSSION

It has been assumed that the charge exists as a surface charge in the
droplet. This is strictly true only when there is no flow and may be assumed
to be approximately true when the convection of charge is small compared to
charge diffusion in the bulk of the droplet. That is, charge conduction
restores surface charge much faster than surface convection disrupts it. From
the charge continuity equation in the bulk (ref. 10), this may be shown to be
valid when eoVR/(kaRg), i.e., agEoen/(kppy), i.e., 002/ (kouy) x e2Ep/0p << 1.
Since e2Ep/qp must be small to justify the assumption of uniform surface
charge distribution (eq. (40)), this imposes a limit on how big go2/(kpuy)
can be.

Figure 2 shows the terminal velocity v_ (eq. (39)) for various values
of wp/up and qg2/(kapy) with B = 2. As can be seen, v, 1s of order one

for all cases thus indicating that the reference scale chosen in appropriate.
Also, Vo tends to 2/3, the value for a solid sphere, for large values of

a/uy or  go?/(kamp).

Figure 3 shows the shape of the droplet (eq.(55)) for wuy/u; = 0.1,
e1Eq2Ro/og = 0.1 and various values of qg2/(kpu) and ep/ey. When
4027 (kou1) = O, the shape is independent of /ey, which is consistent with
equation (50), the result for Case 1. The droplet can be elongated or con-
tracted in the flow direction, the latter being the case for large values of
ep/e1 and qg2/(kpup). The perturbations from a spherical shape must however
be small for the theory to be valid. Many of the assumptions made are true
for small values of Egy; hence, this theory is essentially a small field
strength theory.

SUMMARY

The aim of this study is to examine the effects of surface tension varia-
tions due to electrical effects on the migration of dropiets in an insulating
medium under microgravity condition. The important results are that surface
tension gradients exist only when charge convection is included and tends to
decrease the migration velocity and increase the extent of deformations of the
droplet. The assumptions that the Reynolds number of the motion is small com-
pared to one and that the charge redistribution is negligibie essentially
restricts the theory to small applied field strengths. Further analysis must
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be performed to include the effects of electric double layers at the droplet
surface, non-negligible Reynolds numbers and the redistribution of charge on
the migration ve]oc1ty and shape of the droplet. ‘
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